Kernel Bayes' Rule

نویسندگان

  • Kenji Fukumizu
  • Le Song
  • Arthur Gretton
چکیده

A nonparametric kernel-based method for realizing Bayes’ rule is proposed, based on kernel representations of probabilities in reproducing kernel Hilbert spaces. The prior and conditional probabilities are expressed as empirical kernel mean and covariance operators, respectively, and the kernel mean of the posterior distribution is computed in the form of a weighted sample. The kernel Bayes’ rule can be applied to a wide variety of Bayesian inference problems: we demonstrate Bayesian computation without likelihood, and filtering with a nonparametric statespace model. A consistency rate for the posterior estimate is established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Bayes' rule: Bayesian inference with positive definite kernels

A kernel method for realizing Bayes’ rule is proposed, based on representations of probabilities in reproducing kernel Hilbert spaces. Probabilities are uniquely characterized by the mean of the canonical map to the RKHS. The prior and conditional probabilities are expressed in terms of RKHS functions of an empirical sample: no explicit parametric model is needed for these quantities. The poste...

متن کامل

The Nonparametric Kernel Bayes Smoother

Recently, significant progress has been made developing kernel mean expressions for Bayesian inference. An important success in this domain is the nonparametric kernel Bayes’ filter (nKB-filter), which can be used for sequential inference in state space models. We expand upon this work by introducing a smoothing algorithm, the nonparametric kernel Bayes’ smoother (nKB-smoother) which relies on ...

متن کامل

Empirical Bayes Tests Based on Kernel Sequence Estimation

In this paper, we consider the hypothesis-testing problem in the continuous one-parameter exponential family using the nonparametric empirical Bayes approach. In order to estimate an unknown marginal density and its derivative, a kernel sequence method is introduced. This method uses a sequence of kernel functions and allows the kernel index and window bandwidth to vary simultaneously. Thus imp...

متن کامل

A kernel based classifier on a Riemannian manifold

Let X be a random variable taking values in a compact Riemannian manifold without boundary, and let Y be a discrete random variable valued in {0; 1} which represents a classification label. We introduce a kernel rule for classification on the manifold based on n independent copies of (X, Y ). Under mild assumptions on the bandwidth sequence, it is shown that this kernel rule is consistent in th...

متن کامل

Bayes Sharpening of Imprecise Information

A complete algorithm is presented for the sharpening of imprecise information, based on the methodology of kernel estimators and the Bayes decision rule, including conditioning factors. The use of the Bayes rule with a nonsymmetrical loss function enables the inclusion of different results of an underand overestimation of a sharp value (real number), as well as minimizing potential losses. A co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011